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Successive l-line and 2-line over-relaxation techniques for solving self-adjoint second- 
order elliptic partial-differential equations in a rectangle subject to a periodicity condi- 
tion in one coordinate direction are shown to be equivalent to successive peripheral 
techniques in plane regions with holes. Algorithms are given for solving the resulting 
sets of equations and the numerical results obtained substantiate the equivalence. An 
intuitive comparison is also made between successive peripheral over-relaxation and 
the more usual l-line and 2-line blocks for the model Dirichlet problem. It is concluded 
that the l-peripheral block (SPOR) corresponds more to the 2-line method (SZLOR) 
rather than to the single line grouping (SLOR). 

In a previous paper [2], the authors introduced a new ordering of the mesh 
points on a two-dimensional grid viz. around successive peripherals of the region 
of integration. The technique, when employed in a block over-relaxation scheme, 
was called successive peripheral over-relaxation (SPOR). 

The purpose of this paper is to introduce new algorithms for solving the sets 
of equations arising from the method and also to show that for a certain class of 
problems, a theory does exist for SPOR. Numerical results to substantiate the 
theory are also given. 

1. FORMULATION OF THE PROBLEM 

Consider the solution of the self-adjoin& second-order, elliptic partial-differential 
equation 

-[A(x, y)+& y)]z - [C(x, y) Mx, y)], + F(x, y) 4(x, y) = G(x, Y), (1.1) 
1 
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for (x, v) E R, where R is the rectangle 

with the condition that 4 is periodic in the x-direction. The boundary conditions 
are 

4(x, Y) = 9xX zt 4 9 Y), (1.2) 

for (x, JJ) E R, where R is the region 0 < x < I1 , 0 ,< y < I,, and 

4(x, y) given for all 0 d x < I1 , y = 0, 1~ (1.3) 

Also, A, C, F, G are continuous in i? and satisfy 

4x, Y) > 0, 4x, Y) = 4~ i 4 > Y), 

cc? Y> > 0, cc% Y> = ax i 4 7 Y>, 

0, Y> 3 0, F@, Y> = F(x IJI 4 , Y), 
(1.4) 

G(x, Y) = G(x z!c 4, Y>, 

for (x, v) E W. 
This problem has been treated by Wood [7], but without much consideration 

of the computational aspects involved. In this paper, use will be made of some of 
the theoretical results given by Wood as well as the derivation of efficient compu- 
tational methods for solving the problem. The problem itself can be thought of 
as solving (1.1) subject to the conditions (1.2)-(1.4) over an infinite strip with a 
periodically occurring pattern or over the surface of a cylinder with the function 
values being given on the boundaries. From this latter point of view it is a Dirichlet 
problem and topologically equivalent to a plane region with a hole in it. 

2. THE DIFFERENCE EQUATIONS 

If mesh lines parallel to the coordinate axes are superimposed on the region R, 
then for any mesh point (x, v) 

x = ih, i = 0, I,..., it - 1, 

Y =A j = 1, 2 ,..., m, 

where nh = I1 , (m + 1) k = I, , and the periodic boundary condition is obtained 
by considering the integer suffix i as interpreted modulo n. 
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The derivatives in (1.1) are replaced by the equivalent weighted difference 
representations of the form 

[4x, Y) A!(x, VN. = {4x + W), Y>[m + h u) - 4(x, v>l 
- 4 - @$-a, YNW, Y) - 4(x - h> YNW, (2.1) 

or, denoting 4(x, y) = qh(ih, jk) by & , etc., 

Mx, Y) $w, Y)L = [~i+(uz),i(+i+I.i - &j) - Ai-(1,d&, - L*j)l/h2, (2.2) 

the right-hand side being an approximation to the derivative on the left-hand side, 
evaluated at the point (x, y). A similar expression holds for [C(x, y) bu(x, y)], 
at the point (x, y). Substitution of the approximation (2.2) together with that for 
m, Y) Mx, Y>l, into (1.1) yields a finite-difference representation of (1.1) at 
the point (i/z, jk) in the form 

Vt,jh-~ + %h-1.i + bi,d~.j + Ci,j&+l,i + Ui.&i,j+l = Si,j + t,,i 3 

where 

ai.i = -k2Ai-(1/2).j , Ct.i = -k2Ai+(1/2),j > 

vi.j = -h2Ci,j-(m) , ui.j = -h2Ci.j+(1/2) 3 
bi,j = h2k2Fi.j - ag - ci.9 - ui,j - ~i,i , 

,y. = h2k2G. 
1.3 2.3 9 

(2.4) 

and t,,i represents the truncation error term. 
The solution of (1 .l) subject to the specified conditions is then approximated 

by the solution of the difference equation (2.3) with the truncation error term 
neglected. This set of equations may be written in matrix notation as 

At#=s. (2.5) 

If the points are ordered along the x-lines, then A is partitioned into blocks 
corresponding to the lines y = jk and takes the form 

I 

4 G 
A2 B2 C2 

0 
A = o ‘“\“\“, , 

Avwl B,_, Cm-, 
A, 4,s _ 

(2.6) 
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where Aj, Bi , Cj are square matrices of order n such that 

Bj = 

and 

al,j b1.j C1.j 

,\\\O 
an-2.i bn-2.j Cn-2.j 

Cd = diag(u,,j , u1.j ,..., ~,-l.j), 

Aj = diag(vo,j y u1.j v.aa, Qn-l,j), 

(2.7) 3 

(2.8) 

forj = 1, 2,..., m. The vectors 4 and s of (2.5) are then partitioned relative to the 
matrix A of (2.6). Iterative methods for the efficient solution of (2.5) will now be 
considered. 

3. SUCCESSIVE OVER-RELAXATION TECHNIQUES 

Consider a natural ordering of the lines y = jk. If the coefficient matrix A of 
(2.5) is partitioned so that its diagonal submatrices are all of order (1 x l), i.e., 
the point case then the matrix properties depend on whether II, the number of points 
on each line is even or odd. If n is odd, then the matrix does not possess Property A, 
and the successive over-relaxation theory is not valid. For n even, however, the 
matrix does possess Property A and though a natural ordering of the points on 
each line does not lead to a consistently ordered set of equations, a suitable 
ordering can be found to enable the theory to be applicable. 

In this case, the usual relationship, viz. 

h+w-1 = AU2 
W 

CL, (3.1) 

exists between the eigenvalues A, p of the SOR and associated Jacobi matrices, 
respectively, and the over-relaxation factor w, the optimum value of which is given 
by, 

B = 2/(1 + (1 - /?)l”) (3.2) 

where p is the spectral radius of the Jacobi matrix. 
If (1.1) reduces to Laplace’s equation subject to the boundary conditions (1.2) 

and (1.3), the finite-difference analog at the point (i, j ) can be written as, 

$49 = eaJ$i-l,j + +i+I,il + e~[$i,+l + +i,i+Il, (3.3) 
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where 
k2 

‘a? = 2(h2 + k2) ; 
h2 

*’ = 2(h2 + k2) * 

It then can be shown [7] that in the case when the SOR theory applies, the spectral 
radius of the point SOR matrix is given asymptotically by, 

x II 1 - 2(28,)l’2(7r/(m + l)), (3.4) 

for large values of m, the number of lines of unknowns. Thus, for a square mesh, 
the asymptotic rate of convergence of the point SOR matrix satisfies, 

R(SOR) N 2l/“(r/(m + l)), 

and consequently, is dependent only on m, the number of lines. 
For problems of any computational difficulty, however, point methods are 

unlikely to be used, and where possible, block methods would be employed. If 
then A is partitioned so that each diagonal submatrix consists of mesh points on 
successive groups of p-lines in the x direction, then the matrix is block 2 cyclic 
and a natural ordering of the lines is consistent. The block SOR theory is then 
immediately valid so that (3.1) and (3.2) again hold, but now, h is an eigenvalue of 
the p-line SOR matrix etc. For Laplace’s equation, the diagonal submatrices Bi 
of (2.7) are then given by, 

Bj = 

with 

1 --Be -8,’ 

-iT\‘T\O 4 1 -9, 
,--8, -4 1. 

(3.5) 

A, = Cj = -&I. (3.6) 

For p = 1, the eigenvalues of the l-line block Jacobi matrix D-l(L + U), where 
A = D - L - U, are then 

P 
28, cos(s?r/(m + 1)) T*s = 1 20, cos(27rr/n) s = ’ 1, 2 ,..., m, r = 0, l,..., Iz - 1, (3.7) 

- 

so that the spectral radius is 

ii = cos(vr/(m + 1)). (3-g) 



6 BENSON AND EVANS 

Consequently, the optimum value of w, the spectral radius of the one-line SOR 
matrix, and the corresponding rate of convergence are all dependent only on m, 
the number of lines. 

The successive line over-relaxation method (SLOR) for solving (2.5) with A 
as given by (2.6) is defined by 

Bj&-) = B,@ + w{sj - Aj$j7-:1) - C,+j’$ - &$I”>. (3.9) 

(This form, because of the periodicity condition, corresponds very closely to the 
SPOR method for the Dirichlet problem [2]). The computational procedure involves 
repeatedly solving sets of equations of the form 

B,& = zi , (3.10) 

where Bj is as given in (2.7). To solve such systems, efficient algorithms have been 
given previously by Atkinson and Evans [l]. 

If (1.1) is self-adjoint, then A@, v) = A(x) and C(X, JJ) = C(v) and the coeffi- 
cient matrix A of (2.5) is symmetric and positive definite. Under these conditions, 
a normalized form of the iteration (3.9) is defined by the following equations [5]. 

(y-,/T,) $+1) = [Sj - Aj”j$ - Cj”j$], 
(3.11) 

$+1) _ ,[++l) _ @] + "(4 
3 3 3 9 

for 1 < j < m, where Bj has been expressed as 

Bj = DjTj’TjDj , (3.12) 

and where the prime denotes transpose. Here, Di is a positive diagonal matrix’ 
Tj is an upper triangular matrix and 

Dj& = vj ; Djsi = lj , for 1 <j<m, 

A”$ = D~‘AjD~?~ , for 2<j<m, (3.13) 

cj = D;lCiD;~l , for 1 <j<m--I. 

If now the matrix A of (2.5) is partitioned so that each diagonal submatrix 
consists of points ordered alternately across each pair of successive lines (i.e., 
p = 2) then Eq. (3.9) represents a method of solution corresponding to that of 
2-line successive over-relaxation (S2LOR), but once again because of the periodicity 
condition, represents closely the 2-peripheral method (S2POR) on a plane region 
with a hole in it [2]. Now, systems of equations of the form 

44, = =, , (3.14) 
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must be solved repeatedly, where B, is a square matrix of order 2n of the form 

B, = 

bo,j u0.i c0.j a02 0 
Vo.i+l bo,j+l 0 cO.j+l aosj+l 

%j 

o:l.j+l<<< ,O 

Cn-1.i an4 0 bn-l,j un-1.j 

0 G-l,i+l G-12 on-l.j+l bn-l,j+l 

where j = (2q - 1) for q = 1, 2 ,..., m/2. 
This solution may be effected computationally using an algorithm given by 

Benson and Evans [3], or using the Choleski factorization as given below. 
The BP of (3.15) is from the more general set of matrices of the form 

-dl --e, 
-ii: c2 -dz 
-a3 -b, C3 

--a, -b, 
-a2 

M= 

-eN-l 

-dN -eN 

-UN-3 -bN-2 CN-z -h--2 
-UN-l -b-l cN-l 

-aN -bN 

- eN-2 

-k-l 

CN 

Formally expressing M in the form A4 = LU, where 

Wl 
t% w2 

L= 

(3.16) 

a1o\-o 
UN-4 flN--3 --wN-2 

Yl Yz *” YN-4 (YN-3 + aN--3) (PN-2 + YN-2) wN-l 

61 82 *” 8N-4 k-3 (aN--2 + %V-2) x wN 

(3. 
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U= 

1 "6 g1 hl 1121 

1 fig2 0 h, m2 

\\\ I I 
1 fN-4 gN--4 b-4 MN-4 

1 fN-3 (gN-, + hN--8) mN-3 

1 (h-2 + h-2) h-2 + mN-2> 

1 Y 

3 (3.18) 

forming the product LU, and equating elements with the corresponding c~ficients 
of A, yields the following equations for the elements of L and U. 

co1 = cl ; /3, = -b, ; a1 = -a3 ; y1 = -eNel ; 6, = -dN ; 

fi = -d,/w, ; g, = -el/wl ; h, = -al/q ; m, = -b,/w, . (3’1g) 

~2 = c2 - &.A ; B2 = -(b8 + Gill; a2 = -a4 ; y2 = -yJi ; 

62 = -(eN + hh); fi = 44 + ,h)/%; g, = -$/~2 ; 

h2 = -lV,h ; m2 = -(a2 + Am3/w2 , 

and for i = 3, 4,..., N - 2 

(3.20) 

Yi = 4%A-1 + Yi-2&-2); & = -(&-1.L1 + S&2&-2); 

h = 44 + Lgidwi; gi -e&4 ; (3.21) 

hi = -(&,hi-, + cxi-2hi-2)/coi; mi = -<j3i-lmi-, + oliM2mi-2)/W( . 

Finally, 

UN-1 = cl.,-1 - @N-2 + YN-2)cfN-2 + h-2) 

N-4 

- (YN--3 + a:N-3)(gN-3 + h-,) - c ?‘k& , 
k-l 

x = -(b + (aN-2 + sN-&fN-2 + h-2) + 8&‘&N-3 + hr+3 + x &he), 

(3.22) 
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y = (-l/UN-1) [dN-1 + (YN-2 + BN-ZkTN-2 + mN-2) 
N-4 

-t (YN--Q + EN-d mN-3 + c y@k , 
k=l I 

N-3 

‘l,N = CN - XY - (6,, + aN--2)(gN--2 + mN-2) - c 6kmk. (3.23) 
k=l 

Having computed these coefficients, the system 

M+ = k, i.e., LUCp = k, 

may be solved in the usual manner by putting 

w = Y, Ly = k. 

Thus, 

Yl = W% ; Y2 = (1 bJaM2 - A VA 

and for i = 3,4 ,..., N - 2, 

Yr = Wi)(~i - pi-1 Yi-1 - CL,.-2Yi--2). 

Finally, 

YN-I = (~/WN-I) (k~--I - @N-Z -k YN--2) YN-z - (a~---Q -k YN--3) YN--3 - 121 Ykyk) , 

(3.24) 
and 

YN = (l/UN) (k” - xyN--1 - (aN--2 + a,-,) YN-2 - 1;; akyk). 

Then for the solution 

#N =YN, +N-1 = YN-1 - YYN , 

and for i = N - 2, N - l,..., 2, 1 

(3.25) 

However, if the B, in (3.14) is symmetric, a more efficient form of the algorithm 
can be developed in normalized form following Cuthill and Varga [4]. 

If in the system of equations 
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the matrix M is symmetric, positive definite and of the form 

Cl bl aI UN-1 bN - 
b, c2 b, a2 UN 

;<2<<i<,o 

UN-4 bN-, CN--2 bN-2 UN--2 

UN-1 UN-3 bnr-2 CN-1 bN--l 

bN UN UN-2 h-1 CN 

then M has the unique factorization 

M = DT’TD, 

where 

and 

T= 

D = diag{d, , d2 ,..., dN} (3.28) 

1 e1 h 

f2 0 :: 

4 

1 e2 h, 

\\\ I I 
1 eN--4 fN--4 gN-4 h-4 

1 eN-3 (fN-3 + &h-d b-3 

0 
1 (eN-2 + gN-2) (.fN-2 + b-2) 

1 @N--l + hid 
1 

The elements of D and Tare then obtained from the following relations: 

set, for i 

then 

Let 

dl = c:12, d, = (c, - b1”/d12)“2, el = bl/4d2 ; 

3, 4,..., N - 2, 

v = a+,/di-, , w = (b,-,/d,-,) - eiW2v, 

di = [ci - v2 - ,4V, h-z = 44 , ei-l = w/d, . 

Xl = %-l/d1 , x2 - -fax1 , 

0 = a,v--3/d--3 > w = bN--2/dN-2 - eNp3v, 

(3.26) 

(3.27) 

. (3.29) 
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and for i = 3, 4,..., N - 2 

Then 

and for i 

Let 

N-4 

c Xi2 + (XN-3 + 0)” + (xN-2 + w)2 I! 112 

i=l 

fN-2 = vi&-l 9 eN-2 = WI&--l , 

= 1, 2,..., N - 2 

gi = Xi/dN-l . 

x1 = h&h , 

V = %-2/&a--2 , 

x2 = aNId - elxl, 

W = bN-;/dN--l - eN.& 

and for i = 3, 4,..., N - 1 

and 

Then 

and for i = 

xi = -ei-lxi-l -.f-z&-2 3 

N-Z 

XN-1 = XN-1 - zl gixi - gN-zv- 

N-3 

1 xi2 + @N-2 + u>” + (XN-1 
i=l 

fN-2 = V/dN 3 eN--l = WI&, 

1, 2,..., N - 1 

hi = Xi/dN . 

+ 11 112 4” 

Then, to solve the system M+ = k, rewrite in the form 

DT’TD+ = k, i.e., T’T(D+) = D-lk. 

Putting 04 = y, D-lk = q, the system becomes T’Ty = q, which can be solved 
directly for y in terms of the auxiliary vector p whose components are given by 

Pl= 41, 

P2 = q2 - e,p,, 

Pi = qi - ei-lpi-l - .L2piM2 , i = 3, 4,. . ,, N - 2, 
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N-2 

PN-1 = qN-1 - e~-2P~-2 -&-~PN--3 - C giPi, 
i-1 

N-l 

PN = qN - eN-lpN-1 - fN-2PN-2 - 1 hipi . 
i=l 

The solution y is then obtained by back substitution so that 

YN =PN, 

YN-1 = PN-1 - @N-l + hN-l) YN , 

YN-2 = PN-2 - (eN-2 f gN-2) YN-1 - (fN-2 + hN-2) YN , 

yi=pe-eiy,+l--fiyi+2--giyN--1-hiyN, i=N-3,N-4,...,2,1. 

The actual solution C$ is then obtained from I$ = D-ly using only one division per 
component. Thus, an efficient algorithm exists for use in the S2LOR method and 
can be expressed in a compact form similar to (3.11). 

If (1.1) reduces to Laplace’s equation, then by using a theory due to Parter [6], 
Wood [7] shows that the spectral radius of the 2-line block Jacobi matrix satisfies 

lTi2L c.Y 1 - (7r2/(m + 1)2), (3.30) 

so that the corresponding spectral radius of the S2LOR method is 

x2, ru 1 - (27r/(m + 1)) 21’2, (3.31) 

which is again independent of n. The corresponding l-line (i.e., SLOR) spectral 
radius from (3.8) satisfies 

AIL = 1 - (27dh + I)), (3.32) 

showing that here, as in the normal Dirichlet problem, the SZLOR method is 
asymptotically 2112 times faster than SLOR. 

It has been shown, then, that for the chosen periodic problem with the ordering 
of the points as specified, the convergence rate of the I- and 2-line successive over- 
relaxation methods is independent of the number of points in the x direction. 
Because of the topological equivalence of the regions, similar conclusions hold 
for the I- and 2peripheral methods in a plane region with a hole in it. The problem 
that does remain, however, is to relate the peripheral techniques to the standard 
block methods for the usual Dirichlet problem. Using the previous results, one 
might intuitively proceed as follows. 
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4. SPOR VERSUS OTHER BLOCK METHODS 

The problem of solving, say, Laplace’s equation in the unit square subject 
to Dirichlet boundary conditions, might be considered as the limiting case (as 
the hole size tends to zero) of a unit square with a small hole removed from the 
center with the function being specified on both boundaries. 

If in the usual Dirichlet problem, a square mesh of size h = l/n is used, then the 
spectral radii of the point, l-line and 2-line SOR methods satisfy, respectively, 

A@) ru 1 - (27+2) 

XE) cz 1 - (2(2%r)/n) 

A$’ N 1 - (4?r/n). 

If the region is now considered as being topologically equivalent to the rectangle 
with the periodicity condition, the number of lines, m, in the direction of periodicity 
is, 

m = (n - 1)/2, n odd, 
= (n - 2)/2, n even. (4.2) 

If we take, for example, II even, substituting into 3.4, 3.32, 3.31, gives, 

A(‘) !2 1 - (2(211277)/n), 

x2 N 1 - (477/n), 

A$ 11 1 - (4(21/27r)/n), 

(4.3) 

where the superhx (P) denotes the periodic case. 
Bearing in mind that the l-line method for the periodic problem is equivalent to 

the l-peripheral (SPOR) for the holed region, a comparison of 4.1 and 4.3 shows 
that a peripheral point ordering (if consistent) corresponds to the SLOR method, 
and that SPOR is really nearer to S2POR, i.e., if R(M) denotes the asymptotic 
rate of convergence of method M, then 

R(Point Peripheral) N Ip(SLOR), 

R(SPOR) - 21i2R(SLOR) = R(SZLOR), 

R(S2POR) - 2R(SLOR). 

In practice, then, one would certainly expect SPOR to be faster than SLOR if 
not by the full factor 21/2. 
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5. NUMERICAL RESULTS 

PROBLEM 1. The solution of Laplace’s equation in the unit square subject 
to the boundary conditions 

For the l-line case (the lines being in the x-direction) the experimental value 
of 61 and the value from the theory viz. 

2 
c3 = 1 + sin(v/(m + 1)) (5.1) 

as obtained from (3.2) and (3.8), agreed extremely well. 
For the 2-line case, the approximation (3.30) was used in (3.2) and the values 

so obtained agreed very well with experiment. The method was, as indicated in 
Section 3, faster than the l-line by a factor of 21j2. The results are given in Table I. 

PROBLEM 2. Laplace’s equation in the region R defined to be the unit square 
with a square hole at the center. 

TABLE I 

f.G from CJ from 
m Iterations experiment theory 

5 

10 

15 

20 

40 

9 

15 

19 

39 

10 

20 

30 

39 

77 

13 

21 

26 

50 

SLOR 

1.27 

1.53 

1.66 

1.73 

1.85 

S2LOR 

1.38 

1.55 

1.61 

1.78 

1.26 

1.53 

1.66 

1.73 

1.85 

1.34 

1.54 

1.62 

1.80 
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FIGURE 1 

The associated boundary conditions were + = 0 on the outer boundary and 
4 = 1 on the inner boundary (see Fig. 1). 

This problem was considered by Benson and Evans [2], and SPOR compared 
with standard iterative techniques. It was suggested that the formula (5.1), where 
m is the number of peripheral blocks, gave quite good agreement with practical 
results for the optimum value of w for the SPOR method. It is interesting to 
note that (5.1) is exactly the same as that obtained from (3.2) and (3.8) for the 
l-line SOR on the rectangle with the periodicity condition. The number of iterations 
also varied only with m and not with the mesh size, so substantiating the previous 

TABLE II 

Optimum w 6 from No. of 
m in practice 5.1 iterations 

2 1.09 1.07 7 

4 1.29 1.26 12 

6 1.42 1.40 17 

8 1.52 1.49 21 

10 1.59 1.56 26 

12 1.64 1.61 31 

14 1.68 1.66 37 

16 1.72 1.69 42 

18 1.76 1.72 47 

581/21/1-2 
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theory. Selected results are given in Table II for a mesh size /z = l/40 and the size 
of the hole varying to accomodate the different number of peripherals. 

PROBLEM 3. Laplace’s equation in the ring a < r < 1, i.e., 

a24 IP+;~+g$=O, 1 a4 

subject to the boundary conditions 

4 = 0, on r = a; #=l,onr=l. 

FIGURE 2 

This problem was also considered by Benson and Evans [2]. Ordering the mesh 
points in the (r, 0) plane along successive circumferences makes the problem 
equivalent to the one treated in Sections l-3 (see Fig. 2). It could be expected then, 
that the rate of convergence would depend only on m, and that (5.1) would give 
a reasonable approximation to the optimum value of o. That this is in fact so, 
can be seen from the results in Table III. 

A two-peripheral grouping of the mesh points would also be expected to exhibit 
the same type of behavior and to be faster than SPOR by a factor of 21j2. This is 
in fact so, and the results are given in Table IV. 

The ordering is shown in Fig. 3. 
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TABLE III 

M” Nb 
6 in G from 

m Iterations practice (5.1) 

10 40 3 7 1.175 1.17 

4 9 1.26 1.26 

5 11 1.33 1.33 

6 13 1.395 1.39 

7 15 1.455 1.45 

8 18 1.51 1.49 

20 80 3 7 1.165 1.17 

4 9 1.245 1.26 
5 11 1.31 1.33 

6 13 1.37 1.39 

7 15 1.42 1.45 

8 17 1.46 1.49 

10 21 1.54 1.57 

12 25 1.60 1.62 

14 29 1.65 1.67 

16 33 1.69 1.70 

18 38 1.73 1.73 

(2 M = lit-‘. 
b N = 2a/M. 

TABLE IV 

M N 
12 in 

m Iterations practice 

10 40 4 8 1.17 

6 10 1.28 

8 14 1.39 

20 80 4 8 1.175 

6 11 1.285 

8 13 1.38 

10 16 1.45 

12 19 1.51 

14 22 1.56 

16 26 1.61 

18 28 1.65 
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FIGURE 3 

6. CONCLUSIONS 

Algorithms have been derived for solving the sets of equations arising from the 
l-line and 2-line successive over-relaxation methods used for solving the Dirichlet/ 
Periodic problem considered theoretically by Wood [7]. The numerical results 
obtained substantiate the theory. 

It has also been shown that the theory given by Wood [7] can be used for a 
peripheral ordering of the points in a certain class of problems, i.e., those involving 
a plane region with a hole for which the peripheral techniques seem ideally suited. 
Again, numerical evidence of the validity of the theory has been given. Finally, 
an attempt has been made to link the peripheral and line techniques in the case 
of the normal Dirichlet problem. It is shown that the peripheral grouping is more 
closely analogous to the 2-line grouping; it can certainly be expected to be faster 
than the l-line successive over-relaxation method, probably because it more 
rapidly utilizes the boundary mesh points to compute the interior mesh points. 
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